Application of Bagging, Boosting and Stacking to Intrusion Detection

نویسندگان

  • Iwan Syarif
  • Ed Zaluska
  • Adam Prügel-Bennett
  • Gary B. Wills
چکیده

This paper investigates the possibility of using ensemble algorithms to improve the performance of network intrusion detection systems. We use an ensemble of three different methods, bagging, boosting and stacking, in order to improve the accuracy and reduce the false positive rate. We use four different data mining algorithms, naïve bayes, J48 (decision tree), JRip (rule induction) and iBK( nearest neighbour), as base classifiers for those ensemble methods. Our experiment shows that the prototype which implements four base classifiers and three ensemble algorithms achieves an accuracy of more than 99% in detecting known intrusions, but failed to detect novel intrusions with the accuracy rates of around just 60%. The use of bagging, boosting and stacking is unable to significantly improve the accuracy. Stacking is the only method that was able to reduce the false positive rate by a significantly high amount (46.84%); unfortunately, this method has the longest execution time and so is insufficient to implement in the intrusion detection field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection using C4.5: Performance Enhancement by Classifier Combination

Data Security has become a very critical part of any organizational information system. Intrusion Detection System (IDS) is used as a security measure to preserve data integrity and system availability from various attacks. This paper evaluates the performance of C4.5 classifier and its combination using bagging, boosting and stacking over NSLKDD dataset for IDS. This dataset set consists of se...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Ensemble Methods

The idea of ensemble learning is to employ multiple learners and combine their predictions. There is no definitive taxonomy. Jain, Duin and Mao (2000) list eighteen classifier combination schemes; Witten and Frank (2000) detail four methods of combining multiple models: bagging, boosting, stacking and errorcorrecting output codes whilst Alpaydin (2004) covers seven methods of combining multiple...

متن کامل

The Use of Multi-Objective Genetic Algorithm Based Approach to Create Ensemble of ANN for Intrusion Detection

Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In literature, many researchers utilized Artificial Neural Networks (ANN) in supervised learning based intrusion detection successfully. Here, ANN maps the network traffic into prede...

متن کامل

Why Does Bagging Work? A Bayesian Account and its Implications

The error rate of decision-tree and other classi-cation learners can often be much reduced by bagging: learning multiple models from bootstrap samples of the database, and combining them by uniform voting. In this paper we empirically test two alternative explanations for this, both based on Bayesian learning theory: (1) bagging works because it is an approximation to the optimal procedure of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012